Symmetry-mismatch reconstruction of genomes and associated proteins within icosahedral viruses using cryo-EM
نویسندگان
چکیده
Although near-atomic resolutions have been routinely achieved for structural determination of many icosahedral viral capsids, structures of genomes and associated proteins within the capsids are still less characterized because the genome information is overlapped by the highly symmetric capsid information in the virus particle images. We recently developed a software package for symmetry-mismatch structural reconstruction and determined the structures of the genome and RNA polymerases within an icosahedral virus for the first time. Here, we describe the protocol used for this structural determination, which may facilitate structural biologists in investigating the structures of viral genome and associated proteins.
منابع مشابه
Breaking Symmetry in Viral Icosahedral Capsids as Seen through the Lenses of X-ray Crystallography and Cryo-Electron Microscopy
The majority of viruses on Earth form capsids built by multiple copies of one or more types of a coat protein arranged with 532 symmetry, generating an icosahedral shell. This highly repetitive structure is ideal to closely pack identical protein subunits and to enclose the nucleic acid genomes. However, the icosahedral capsid is not merely a passive cage but undergoes dynamic events to promote...
متن کاملSingle particle cryo-electron microscopy and 3-D reconstruction of viruses.
With fast progresses in instrumentation, image processing algorithms, and computational resources, single particle electron cryo-microscopy (cryo-EM) 3-D reconstruction of icosahedral viruses has now reached near-atomic resolutions (3-4 Å). With comparable resolutions and more predictable outcomes, cryo-EM is now considered a preferred method over X-ray crystallography for determination of atom...
متن کاملBreaking the symmetry of a viral capsid.
The small size, and thus coding capacity, of viral genomes necessitates the repetitive use of identical building blocks in constructing the viral capsid. This genetic economy gives rise to highly symmetric structures, typically with either helical or icosahedral geometries. Assembly of symmetric viral capsids is believed to proceed via “conformational switching” of individual protein subunits (...
متن کاملThe architecture and chemical stability of the archaeal Sulfolobus turreted icosahedral virus.
Viruses utilize a diverse array of mechanisms to deliver their genomes into hosts. While great strides have been made in understanding the genome delivery of eukaryotic and prokaryotic viruses, little is known about archaeal virus genome delivery and the associated particle changes. The Sulfolobus turreted icosahedral virus (STIV) is a double-stranded DNA (dsDNA) archaeal virus that contains a ...
متن کاملFrom structure of the complex to understanding of the biology
The most extensive structural information on viruses relates to apparently icosahedral virions and is based on X-ray crystallography and on cryo-electron microscopy (cryo-EM) single-particle reconstructions. Both techniques lean heavily on imposing icosahedral symmetry, thereby obscuring any deviation from the assumed symmetry. However, tailed bacteriophages have icosahedral or prolate icosahed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2016